162 research outputs found

    On the Opening of Branes

    Get PDF
    We relate, in 10 and 11 dimensional supergravities, configurations of intersecting closed branes with vanishing binding energy to configurations where one of the branes opens and has its boundaries attached to the other. These boundaries are charged with respect to fields living on the closed brane. The latter hosts electric and magnetic charges stemming from dual pairs of open branes terminating on it. We show that charge conservation, gauge invariance and supersymmetry entirely determine these charges and these fields, which can be seen as Goldstone fields of broken supersymmetry. Open brane boundary charges can annihilate, restoring the zero binding energy configuration. This suggests emission of closed branes by branes, a generalization of closed string emission by D-branes. We comment on the relation of the Goldstone fields to matrix models approaches to M-theory.Comment: 13 pages, LaTeX, no figure

    Effective superpotential for U(N) with antisymmetric matter

    Full text link
    We consider an N=1 U(N) gauge theory with matter in the antisymmetric representation and its conjugate, with a tree level superpotential containing at least quartic interactions for these fields. We obtain the effective glueball superpotential in the classically unbroken case, and show that it has a non-trivial N-dependence which does not factorize. We also recover additional contributions starting at order S^N from the dynamics of Sp(0) factors. This can also be understood by a precise map of this theory to an Sp(2N-2) gauge theory with antisymmetric matter.Comment: 22 pages. v2: comment (and a reference) added at the end of section 2 on low rank cases; minor typos corrected. v3: 2 footnotes added with additional clarifications; version to appear in journa

    Charting the phase diagram of QCD3

    Get PDF
    We study the phase diagram of SU (N) gauge theory in three space-time dimensions with a Chern-Simons term at level k, coupled to two sets of fundamental fermions with masses m1 and m2, respectively. The two-dimensional phase diagram that we propose shows a rich structure and widens in an interesting way previous results in the literature, to which it reduces in some limits. We present several checks of our proposal, including consistency with boson/fermion dualities. In this respect, we extensively comment on the structure of the scalar potential which is needed on the bosonic side of the duality

    Supersymmetry and Gravitational Duality

    Full text link
    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-NUT solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.Comment: 23 pages, no figures; v2: sign typos fixed in Section 6; v3: version to appear in PRD. Improved discussion in section 5 (on the surface NUT charges) and in section 6 (on the superalgebra

    Exploring Holographic General Gauge Mediation

    Get PDF
    We study models of gauge mediation with strongly coupled hidden sectors, employing a hard wall background as an holographic dual description. The structure of the soft spectrum depends crucially on the boundary conditions one imposes on bulk fields at the IR wall. Generically, vector and fermion correlators have poles at zero momentum, leading to gauge mediation by massive vector messengers and/or generating Dirac gaugino masses. Instead, non-generic choices of boundary conditions let one cover all of GGM parameter space. Enriching the background with R-symmetry breaking scalars, the SSM soft term structure becomes more constrained and similar to previously studied top-down models, while retaining the more analytic control the present bottom-up approach offers.Comment: 28 pages, 4 figures; v2: typos corrected and refs adde

    Cascades with Adjoint Matter: Adjoint Transitions

    Get PDF
    A large class of duality cascades based on quivers arising from non-isolated singularities enjoy adjoint transitions - a phenomenon which occurs when the gauge coupling of a node possessing adjoint matter is driven to strong coupling in a manner resulting in a reduction of rank in the non-Abelian part of the gauge group and a subsequent flow to weaker coupling. We describe adjoint transitions in a simple family of cascades based on a Z2-orbifold of the conifold using field theory. We show that they are dual to Higgsing and produce varying numbers of U(1) factors, moduli, and monopoles in a manner which we calculate. This realizes a large family of cascades which proceed through Seiberg duality and Higgsing. We briefly describe the supergravity limit of our analysis, as well as a prescription for treating more general theories. A special role is played by N=2 SQCD. Our results suggest that additional light fields are typically generated when UV completing certain constructions of spontaneous supersymmetry breaking into cascades, potentially leading to instabilities.Comment: 29 pages, a few typos fixed, improved discussion, added figure; now there is 1 figur

    Tame D-tadpoles in gauge mediation

    Full text link
    We revisit models of gauge mediated supersymmetry breaking where messenger parity is violated. Such a symmetry is usually invoked in order to set to zero potentially dangerous hypercharge D-term tadpoles. A milder hypothesis is that the D-tadpole vanishes only at the first order in the gauge coupling constant. Then the next order leads to a contribution to the sfermion masses which is of the same magnitude as the usual radiative one. This enlarges the parameter space of gauge mediated models. We first give a completely general characterization of this contribution, in terms of particular three-point functions of hidden sector current multiplet operators. We then explore the parameter space by means of two simple weakly coupled models, where the D-tadpole arising at two-loops has actually a mild logarithmic divergence.Comment: 13 pages + 9 pages of appendix, 1 figure; v2: some clarifying comments added, version to appear in JHE

    Soft Spectrum in Yukawa-Gauge Mediation

    Full text link
    We introduce a model independent parametrization for a subclass of gauge mediated theories, which we refer to as Yukawa-gauge mediation. Within this formalism we study the resulting soft masses in the visible spectrum. We find general expressions for the gaugino and scalar masses. Under generic conditions, the gaugino mass is screened, vanishing at first order in the SUSY breaking scale.Comment: 22 pages, 4 figures; v2: minor corrections, published versio

    N=2 Supersymmetric SO(N)/Sp(N) Gauge Theories from Matrix Model

    Get PDF
    We use the matrix model to describe the N=2 SO(N)/Sp(N) supersymmetric gauge theories with massive hypermultiplets in the fundamental representation. By taking the tree level superpotential perturbation made of a polynomial of a scalar chiral multiplet, the effective action for the eigenvalues of chiral multiplet can be obtained. By varying this action with respect to an eigenvalue, a loop equation is obtained. By analyzing this equation, we derive the Seiberg-Witten curve within the context of matrix model.Comment: 14pp;v2 refs added, clarified in page 4, 6 and 11 and the sign of resolvent corrected;v3 improved in page 5 and 6 and the flavor dependent part in the integration around P added and to appear in PR

    Four-modulus "Swiss Cheese" chiral models

    Full text link
    We study the 'Large Volume Scenario' on explicit, new, compact, four-modulus Calabi-Yau manifolds. We pay special attention to the chirality problem pointed out by Blumenhagen, Moster and Plauschinn. Namely, we thoroughly analyze the possibility of generating neutral, non-perturbative superpotentials from Euclidean D3-branes in the presence of chirally intersecting D7-branes. We find that taking proper account of the Freed-Witten anomaly on non-spin cycles and of the Kaehler cone conditions imposes severe constraints on the models. Nevertheless, we are able to create setups where the constraints are solved, and up to three moduli are stabilized.Comment: 40 pages, 10 figures, clarifying comments added, minor mistakes correcte
    • …
    corecore